Visualizing the Bias of Enterprise Metamodels
towards Nuanced Concepts

David Naranjo, Mario Sinchez, and Jorge Villalobos
Systems and Computing Engineering Department
Universidad de los Andes
Bogotd, Colombia

Abstract—In Enterprise Modeling, we use several languages for
designing, analyzing, and communicating the different domains
of an enterprise. Two important criteria for choosing a domain-
specific language are its appropriateness to the requirements
of the enterprise, as well as the accuracy of the language
in describing the domain at hand. However, in some business
domains, core concepts —such as Capability, Service, and Value—
represent constructs that have different (and often conflicting)
definitions and interpretations among the literature. In this
context, the bias of a language is the preference for a theory, i.e.
a particular interpretation of a concept. Currently, there is no
explicit way of assessing and communicating this bias, and thus
it remains difficult to assess the appropriateness and accuracy of
a language for a particular purpose. In this paper, we provide
a method for visual comparison of this bias with regard to the
Capability concept, comparing three theories and three modeling
languages where this concept is pivotal.

I. INTRODUCTION

In Enterprise Modeling, models are structured abstractions
of reality that are produced with a Modeling Language. Over
the years, these fields have made a transition from using
general-purpose Modeling Languages (such as UML) to using
more specialized languages, such as ArchiMate, BPMN, and
SOAML, with the added value of having a myriad of tools
and methodologies that support the modeling and analysis of
models produced with these languages.

With this abundance of languages, we can model and
analyze several relevant aspects of an enterprise; all we need
is the disposition, time, and resources to do so. Furthermore, if
these languages do not suffice, we can take fragments of them,
we can extend them, or even create micro-languages that are
tailored for more specific domains and purposes. Thus, the
focus of attention nowadays is not in how to model a perspec-
tive of an enterprise, but on which modeling languages serve
our purposes best, and how can we accommodate multiple
languages to our requirements.

This has lead to a —still ongoing— discussion of what does it
mean to model, and which are the desired properties of mod-
eling languages. According to Selic [1], an engineering model
must possess the following five characteristics: Abstraction,
understability, accuracy, predictiveness, and inexpressiveness.

In particular, a model is accurate if it “provides a true-
to-life representation of the modelled system’s features of
interest” [1]. This accuracy can be straightforward to assess
for some domains of an enterprise, e.g. infrastructure, appli-
cations, and resources, where conceptual entities have a direct

correspondence to objects in reality. However, when modeling
business and strategic domains, this is a more difficult task:
Many concepts of these domains have different interpretations,
depending on the theories on which they are supported. For
instance, consider the concept of Capability:

This construct has gained a privileged position in the
discourse of strategic management, and can be colloquially
explained as both the capacity and ability of doing something.
First introduced in 1965 by Ansoff [2], this construct has
had several comebacks in the literature: Around 1995, [3],
2005 [4], and recently, [5]. Fifty years since its inception, this
concept has brought an plethora of definitions, and has led to
several literature reviews (see [6] and [7]) as authors constantly
revise and appropriate this concept in their theories, sometimes
leading to inconsistencies between them [6]. These different
theories have their own classification schemes, granularity
levels, and methods of analysis. For these reasons, we consider
the term Capability as a nuanced concept, i.e. it has different
interpretations depending on the context that it is applied.

In this paper, we argue that the accuracy of a modeling
language can be affected by nuanced concepts introduced to
the language, as there is a potential discrepancy between the
perceived semantics of a concept by language designers and
its interpretation among language users, resulting in a false
sense of agreement. In order to make explicit this discrepancy,
we introduce the notion of bias of a modeling language as its
tendency to use specific theories of a nuanced concept. We also
propose an approach for visualizing this bias, where multiple
relevant theories and languages can be examined, based on
related concepts in their metamodels.

This examination is made by creating an ontology of the
essential classifiers that are used to define the controversial
concept, and can be used to compare languages and theories
alike. This classification scheme leaves a visual signature that
can be used to indicate the bias of each essential classifier.

This paper is structured as follows: Section II offers a
background of the problem, centered on the relationship
between Syntax and Semantics. In Section III, we formalize
the notion of nuance, and provide a conceptual framework
around this concept. In Section IV, we describe our approach
for calculating this bias. Then, Section V demonstrates our
approach for the Capability concept.

II. THE DARK SIDE OF MODELING

Being such an essential activity, modeling has been ap-
proached by a confluence of disciplines, using artifacts such as
conceptual models, ontologies, database schemas, engineering
models, and architecture models in their respective fields.
However, like other central notions (such as ‘information’),
the term ‘model’ is hard to define, and there is no consistent
or common understanding of what it means ‘to model’ [8].

While the literature has left us with several definitions
[9], it seems that “there is no apparent consensus about the
terminology, not even about what should be the minimal set of
basic modeling concepts.” [10]. However, despite the myriad
of interpretations this concept carries, we keep modeling, and
conferences keep flourishing, with several research commu-
nities that use models as their main artifacts; it seems that
each community adopts a particular definition, and develops
theories that make use of this notion of modeling.

For this reason, the term model can be seen as another
example of a nuanced concept: It has different interpretations,
depending on the context and purposes that the term serves.
For example, in model-based Enterprise Architecture, a Model
is a description of an enterprise among several domains —
such as the Strategy, Business, Application, and Technology
domains— and is used for several purposes, such as analysis,
design, simulation, and communication between stakeholders.
These models are produced with domain-specific languages
such as ArchiMate, BPMN, SOAML, i*, or Metamodels such
as BMM, and the one of TOGAF.

A. Modeling Languages and Metamodels

According to Morris [11], a modeling language can be
divided in three parts: Syntax, Pragmatics, and Semantics. The
Syntax is described in terms of a Metamodel, which “makes
statements about what can be expressed in the valid models of
a certain modeling language” [12]. This Metamodel is usually
called a Linguistic Metamodel [13].

Pragmatics concern the relation of signs to human inter-
preters [11], and can be associated to the pragmatic feature
defined by Stachowiak [14], or the abstraction property of
Selic: “A model needs to be usable in place of an original
with respect to some purpose”. In addition, we need that our
models are reasonably inexpensive to develop, which again
can be related to the reduction feature of Stachowiak, and the
inexpensiveness of Selic.

Semantics are concerned with the meaning and interpreta-
tion of the concepts embedded in the language. As Harel and
Rumpe [15] underscore, Semantics of a language specify the
very concepts that exist in the Universe of Discourse, cap-
turing decisions about the kinds of things the language should
express. We can associate this aspect as the Mapping Feature
of Stachowiak [14] (“A model is based on an original’), or
the Accuracy (“it provides a true-to-life representation of the
modelled system’s features of interest”) of Selic [1].

B. Syntax versus Semantics

Motivated by common misunderstandings, Harel and
Rumpe [15] considered necessary to draw a clear line between
the Syntax (described by a Linguistic Metamodel), and the
Semantics (i.e. its interpretation) of a modeling language.

The mapping between conceptualizations of a domain and
elements of a language is often found in the specifications of
the language notation. Usually, concepts are described infor-
mally through examples and definitions in natural language
(e.g. plain English), as there is no simple and obvious way to
define this complex semantic mapping precisely, clearly, and
readably [15].

As explained by Guizzardi [16], this mapping is an Ontol-
ogy in the philosophical sense, i.e. it is a particular world-view
embedded in the modelling primitives of a language. When
explicit, this ontology is called an Ontological Metamodel [17]
of the language, or simply, the Ontology of the language.

In regard to the relationship between Metamodels and
Ontologies, Atkinson and Kiihne [18] examine the roles of
semantic and ontological types, and describe situations when
the distinction between both types (and therefore between
Syntax and Semantics) dissolves.

For instance, in EA modeling languages, the linguistic
type Process, and the ontological classifier Process share an
obvious lexical similarity. However, the function of the former
is to produce tokens in the Language, while the latter refers
to a construct, i.e. the abstract idea of a process; there is a
dichotomy on the roles that linguistic and semantic types play.

As Atkinson and Kiihne [18] explain, we can start to
see these differences if we consider the context on which
both types are used: “ it becomes clear that even though
types in a domain-specific language definition could have the
appearance of ontological types, they do not in any way fulfill
the same function”.

Nevertheless, the authors point out that the intended use of
a type may not be entirely clear, notwithstanding any semantic
litmus test that is performed. More importantly, they suggest
that such ambiguity could be the basis for an approach that
promotes ambivalent classification as a feature, and “believe
that future work should provide a comprehensive analysis of
the trade-offs involved in using [this] approach”.

Thus, the choosing of linguistic classifiers in a notation is
not arbitrary, and holds a relationship to ontological classifiers
that represent the conceptualization and interpretation of a
domain. In this manner, the relationship between Syntax and
Semantics is the ‘dark side of modelling’, not because it is
ill-defined, but because it is usually hidden.

In the context of Semantic Interoperability, Karagiannis and
Hofferer [19] introduce the term Inherent Semantics, which
are “a kind of inner meaning of modeled resources that is
exceeding the type semantics that is being inherited by the
elements of the metamodel-layer”. On a related manner, but in
a different field, Third [20] defines the hidden semantics of an
ontology as the given names or labels of ontology identifiers,
“corresponding to natural language words or phrases which are
very dense with information as to their intended referents”.

C. Semantic Structures and the Ontology Spectrum

Nowadays, it is acknowledged that modeling languages and
ontologies complement each other and both are needed to
describe knowledge for a complex domain [17], [19], [21]-
[23]. Furthermore, modeling languages such as the Semantics
of Business Vocabulary and Rules (SBVR) language [24], try
to mix both worlds, providing a model of the meanings and
interpretations of concepts for a specific organization.

It is common to refer to an ontological model as the
ontology of a domain. However, given the liberal use of this
term in the literature, researchers have coined the notion of
a ontological spectrum [22] or continuum [25] to describe a
range of different semantic artifacts (e.g. controlled lists of
words, taxonomies, thesauri, topic maps) that are commonly
used to describe concepts and their relationships.

The difference, as with models, mostly lies in their purpose:
(Formal) ontologies aim to describe categories of existence
[26], and to organize canonical knowledge [25] with clearly
defined hierarchical relationships and constraints, in order to
reason and make inferences.

Conversely, other semantic structures, such as terminolo-
gies, are structured vocabularies, i.e. organized sets of terms
that reflect the “most common” definitions of a concept, and
are used for unambiguous communication in natural language.

In particular, thesauri are useful to disambiguate meanings
of similar concepts, and usually offer a longer set of rela-
tionships (e.g. meronymy, hyponymy, synonymy, antonymy,
entailment) than the one of ontologies. For this reason, this
specific kind of structures have been used for 1) ontology
reengineering, as a basis for constructing domain-specific
ontologies [26], and 2) as an aid for clustering and comparative
analysis of metamodels [27].

D. Semantic Similarity

Semantic similarity deals with the relatedness between
concepts, which can be lexicographically different but seman-
tically similar. In this domain, WordNet [28], a thesaurus of
the english language, has been the most used lexical database
for finding semantic similarity.

Classical algorithms, such as the Leacock-Chodorow, Wu-
Palmer, Resnik, or Ling similarities [29], are all based on
IS-A hierarchical relationships. For instance, Semantic Path
Similarity is defined as path(z,y) = (I(z,y))~ !, with I(z,y)
the shortest directed path through a common ancestor.

However, hierarchical approaches have their limitations,
as the structure and information content of different ontolo-
gies are not directly comparable [30]; furthermore, these ap-
proaches do not take advantage of other relationship types of a
thesaurus. For these reasons, weight-based, hybrid (supported
by an ontology), and feature-based methods are preferred.

In Enterprise Modeling, ArchiMate relationship types can
be used to assess semantic similarity, as the language assigns
weights to structural relationships. While this weight is em-
ployed for applying derivation rules, it is possible to assess
the semantic relatedness between concepts of the language.

abstraction representation

Conceptualization Specification

Reality

Journal
Article

Ontology

Role 3

Figure 1. Different conceptualizations among roles.

E. Nuances between Conceptualizations

Ullman’s ‘meaning triangle’ has been widely used to de-
scribe the relationship between a system under study (SUS),
a conceptualization of such system, and a specification'
(also called the communicated model or the “language”)
[31]. Conceptualizations are immaterial entities that abstract
elements of reality, and only exist in the mind of a person.
In order to document, communicate, and analyze these ab-
stractions, specifications are concrete artifacts that represent a
conceptualization [32].

However, specifications are made by people from different
disciplines, backgrounds, levels of expertise and familiarity
with the system, and therefore with different conceptualiza-
tions of the SUS (see Fig. 1), even between practitioners of
the same community. Furthermore, these specifications vary
in their degree of formality and detail: some communities
use natural language, some use sentential logic, and other
use modeling languages or ontologies to communicate their
conceptualizations.

These differences stem from the particular world-view and
specific needs of each community or individual. In this man-
ner, the abstraction process that ‘conceptualizes’ reality is
not the same for everyone, and depends on the intention and
requirements of each role. We define nuances as differences
between conceptualizations, and a nuanced concept is a re-
curring concept between nuances, that despite having different
definitions, has the same (or similar) classifier.

These nuances often bring contradictions, not just in the
definition of an individual concept, but with regard to related
concepts. For instance, Fig. 1 shows three different conceptu-
alizations for the nuanced concept A. In this case, A is directly
related to D for Role 2 (A — D), whereas for Role I there
are some intermediate concepts, i.e. A -+ B — C — D.

ITo avoid confusion, we refer to specifications, instead of models or
languages.

III. A THEORY OF NUANCE

As conceptualizations are immaterial entities in the head of
each person, the identification and comparison of nuances, de-
spite being in terms of conceptualizations, must be performed
between specifications. However, this has two main issues:

1) Specifications are usually described in different lan-
guages, levels of abstraction, and detail.

2) Nuances are not always explicit in specifications, as
they contain inherent (i.e. hidden) semantics, as well as
contradictions and intermediate concepts.

To overcome the first issue, we can consider the notion
of the rendering of a specification, which is a translation
between specifications. Thus, in order to compare different
specifications, we will compare between renderings in the
same language. Logical renderings of models [31] and ontolo-
gies [32] can be found aplenty in the literature. To overcome
the second issue, as well as formalize the definition of nuance,
we will employ a particular formal rendering, Model Theory,
useful to examine the interplay between syntax and semantics.

A. Structures, Languages, and Theories

A structure S is an object with four ingredients [33]:
S = {dom(S), P, F%,C%} (1)

where dom(S), the domain of S, is a set of elements, P° =

{P$,..., P} is a set of relations, 'S = {Fy,....,F5} is a

set of functions, and C¥ = {c{, ...,cJ } is a set of constants.
A language .Z [34], also called the signature of S [33]:

gz{P(),...,Pn,F(),...,Fm700...,cq} (2)

is a collection of symbols, where each P; is a symbol that
names the relation P, each Fj is a symbol that names the
function FjS , and each ¢, is a symbol that names the constant
¢y for all 4, j, k € N such that i < n, j < m, and k < g. This
mapping is often called the interpretation function .# (cf.
[32]) and its inverse, .# ~1, is the representation function.

The symbols of .Z can be used to produce sentences that
describe S. A sentence ¢ is a string of terms, where each term
is a string of symbols of .Z, in conjunction with variables (i.e.
temporary labels for elements of a structure), and the symbols
of first-order logic.

A structure S is a model® of ¢ (i.e. S models ¢) if ¢ is true
in S. This relationship is expressed as: S F ¢. A theory is a
set of ¢-sentences:

T = {(bOa"'a(bn} (3)

such that S E ¢ for all ¢ € .

To illustrate the above definitions in the context of enterprise
modeling, we introduce a small modeling language (see Fig.
2), which is a fragment of the ArchiMate language [35].

A rendering of Fig. 2 can be expressed as:

Sma = {dom(mA), pmA A, C’mA}

2In the strict mathematical sense.

mposition

Business t'< Business
x Process triggering |w Event
access
+
Business

4— Representation

realization LZ

y Object

Figure 2. Mini-ArchiMate specification.

dom(mA) is an infinite set of all conceptual entities, and C™4
is a set of constants, i.e. specific elements of dom(mA). Edges
are expressed with the asymmetric relation R, where mRn
holds true iff m and n are connected, for m,n € dom(A):

PmA = {R} FmA = {@} CmA = {w7x7y7 Z,C, a’) r) t}

The language .%,,4 contains a symbol for R, i.e.
#~1(R) =—, as well as constants labeling elements of C™4:

DE/pm,A = { —,W,X,Y,2, Caa7r7t}

We differentiate between constants of the domain and constant
symbols of the language, e.g. .# ~*(w) = w. For brevity, we
use the same literal for both; thus, when we use w, we are
referring to the element labeled Business Event, and so on.
Finally, we can construct a theory 7,4 where S;,4 E J,4:

Ima ={o} ¢ =Va-(z — x)
This theory just states that no element is connected to itself.

B. Diagrams, Classification, and Substructures

Consider the set of atomic formulas that can be derived from
this theory. This set is known as the diagram [33] of S, 4,
expressed as Z(mA). We can find the following 11 sentences
among this set, as they hold for ¢:

Po=w—t Pr=t—ox Yy=x—>t Yzg=x—>¢C
PYe=a—x Yr=a—y

Yg=y—a Yg=r—=y YPo=2—1T)

Yg=c—x Yg=x—a

Fig. 2 can be expressed by these sentences, so let us call this
subset 2. (mA) = {¢o,...,10} the positive explicit dia-
gram of S,, 4. In addition, 2(mA) also contains statements
such as:

77[)11:t—>w ¢12=I‘—>Z ’L/J13:Z—>t ®))

These statements are valid, but are assumed to be false by their
absence in Fig. 2. Thus, let us call the subset 7, (mA) =
{-¢11, ..., ", } the negative explicit diagram of S,, 4 that
contains the negation of such statements. The union of both
sets is called the explicit diagram: 2,(mA) = 2 (mA) U
2. (mA), a finite set that contains either the affirmation or

€
the negation of every possible relation between all ¢ € C™A,

Class Relationship
S e

?

Figure 3. Mini-Ecore specification.

v

However, 7,4 allows other kind of statements, such as:

Ypy1 =t =T Ypp2=X—=W Ypz3=2—y ... (6)

that do not make much sense in our context, as we would
like to differentiate between class elements (w,x,y,z) and
relationship elements (c, a, r, t), as described in Fig. 3.

To disallow statements such as the ones of Eq. 6, let S, a/
be a structure with the same domain dom(mA), and two
additional constants, i.e. Cypar = Cya U{s, e}. This structure
has the same set of relations, pmA" — P4 but includes a
I' classification function, i.e. F™4" = {T'}, which is a non-
transitive surjective morphism [31] where:

I'(m)=s for m € {w,x,y, 2}
I'(m)=e for m € {c,a,r,t}
I'(m)=m for any other element.

With the language £}, 4+ = £, 4 U {s, e}, we can add three
sentences to 7, 4:

TImar = Ima U{do, p1, P2}
do = (Vm)(s > m=m=e)
$1=(Ym)(e > m=m=s)
2 = (Ym,n)(m = n=T(m) #T(n))

In this manner, 7,4/ renders false formulas such as the
ones in Eq. 6. These additions can be expressed as a different
structure S, s (see Fig. 3), if we consider I', not as a function
of a specific structure, but as an homomorphism between
structures. By the Lowenheim-Skolem theorem [33], S,,, 4 and
Sma are substructures of S;,, 4. In general, when there is an
homomorphism present, it means that we can jump between
substructures, and therefore, between specifications.

C. Ambiguous Classification and Hidden Semantics

The partition of substructures described above allows to
have incomplete theories that assume other theories, provided
an homomorphism between them. For instance, we can con-
sider the specification X4 = {S,4,-%ma, Tima} as the Archi-
Mate modeling language, and Xpr = {Smnry Lonars Timnr } as
the Ecore metamodel. Given the classification homomorphism
T" that exists between both structures, we can say that the ex-
plicit ArchiMate specification assumes the Ecore specification.

We can formalize this notion as follows: Let a structure .S,
be the substructure that generates an explicit diagram Z.. We
define an assumed diagram &, as the diagram generated by
all the substructures that have an homomorphism with S..

O
intended

SN
e+ == % Cla

explicit assumed

/N /N
S O Oh Ol

positive negative linguistic ontological

Figure 4. Diagram hierarchy.

Furthermore, we define an intended diagram 2; = Z.U%,
as the union of the explicit diagram and the assumed diagram.

A nice property of diagrams is that they can be used to
describe structures: For instance, a positive explicit structure
is a structure that generates 7.

Laarman and Kurtev [36] describe two types of classifi-
cation, linguistic and ontological, as “in every language an
ontology can be found”. We could differentiate between lin-
guistic (T*) and ontological classification (I'°); however, this
distinction is often ambiguous [18]. Thus, we use the symbol
I'? to denote the ambiguous classification homomorphism
between explicit and assumed structures (see Fig. 4).

We can partition %, in two subsets, namely %, the lin-
guistic diagram, and 7, the ontological diagram (see Fig.
4). We have already outlined the construction process of a
linguistic structure (e.g. the substructure S,,5s), which is a
structure that generates &;. Ontological structures can be
constructed in a similar manner, as outlined by Guizzardi [16],
[32].

Given a explicit structure S., hidden semantics is an
hypothetical ontological structure .S where an homomorphism
between S, and S is suggested, but not provided.

D. Nuances

Given two explicit structures A and B, with languages .Z4
and £ respectively, a nuanced concept is present when for
a constant symbol ¢y € £, there exists a symbol cg € £
such that:

caocp (N

holds true. The relation o is a lexical similarity relation (see
Sec. II-D) that holds true if ¢4 is similar to c¢g. In other words,
if two labels are similar, both underlying concepts can be seen
as two instances of a nuanced concept.

Formally, a nuanced concept .#" = {co,...,c,} for a
number n—1 of explicit structures is a set where ¢; € dom/(.S;)
for all 0 < ¢ < n and the following formula holds:

(Va,be A)(I " (a)os 7 (b)) ®

1. Kernel Identification

2. Ontology Anchoring

Ontology

1. Cluster Selection

2. Semantic Distance
Clusters

Specification - Bias .>
Modelling CVErses Calculation
Engineering Bias
A Visualization
. . Models f A Models
1 1 1 1
== i
\/ B . =
== g
Textual Language Base Domain Co-ocurrence
Specifications Specifications Taxonomy Thesaurus Thesaurus

Figure 5. Overview of our Approach.

In particular, the notion of a nuanced concept is of interest
when there is not an isomorphism between structures, e.g.
when comparing different specifications.

However, nuances are more than just lexical similarity
between concepts: we need to obtain other elements that
are semantically related to the nuanced concept. Thus, for a
structure A that contains a nuanced concept ¢ € .4 with a
mapped constant C, i.e. .#(C) = ¢, we define the nuanced
kernel of C under A:

Ay ={co, ...} 9)

as the constants of A such that the weighed semantic
distance A between c and every ¢; € # is less or equal to
a maximum semantic distance 6,,4z.

This distance is a function A : (C4)? — R that returns
the weighed path distance between I'’(c) and I'’(c;) in an
ontological assumed structure. For example, suppose that the
constant x of Fig. 2 is a nuanced concept. Then, in a semantic
structure (e.g. a thesaurus) that is assumed for S, 4, z is in the
nuanced kernel of x if A(T'?(x),T7(2z)) < ez for a given
5maw~

Finally, the bias of an explicit structure A can be seen as
the inclination of a specification towards particular members
of JZ 4, and can be expressed as a vector function:

B:Q, — RIZA (10)

where |# 4| is the magnitude of the set:

(1)

In other words, 3 is an n-dimensional vector, where n is
the sum of the magnitude of all nuanced kernels. Each -
coordinate of the vector is the value of A(T?(a),I'? (b)), where
a€ AN and b € Jﬁfg?

%/Wz{%{gfu---u%f}

IV. A METHOD FOR EVALUATING BIAS

In order to analyze the bias of a set of specifications towards
a specific interpretation of a nuanced concept, we propose

an approach that takes into account semantic relationships
between the nuanced concept and its nuanced kernel.

We will exploit the ambivalent classification identified by
Atkinson and Kiihne [18] and described in the previous
section. In this case, we will uncover the hidden semantics
[19] of such specifications by reverse-engineering an ontology
that contains several weighed semantic relationships, which
are used to calculate the semantic distance between pairs of
concepts. Figure 5 provides an overview of the approach,
which is divided in three main stages:

A. Specification Modelling

A key difference between specifications resides in their
degree of formality of their renderings: For example, in
Enterprise Modeling, some theories of Capabilities come from
other disciplines (such as Strategic Management [2], [3], [37]),
or even from the private sector (see [38]). These theories
lack an explicit metamodel, as they are usually described
in knowledge artifacts (e.g. reports, articles, books) written
in natural language, with varying granularity and degree of
formality. Thus, this first step refers to the construction (or
retrieval) of a model that represents a conceptualization of
a domain. This model acts as a rendering of the explicit
structure of Section III-C.

B. Ontology Reverse-Engineering

Reverse-engineering refers to the process of creating repre-
sentations of a system in another form or at a higher level of
abstraction [39]. This stage is concerned with the construction
of an ontology (in this case hierarchical taxonomy) for the
nuanced concepts of the specifications, as well as the related
concepts in the nuanced kernel for each model.

For this purpose, we perform first a Kernel Identification,
by calculating the semantic weighed distance A. This can
be made by using a thesaurus, and calculating the undi-
rected weighed path distance between concepts. Weights are
assigned to different similarity relationships (e.g. meronymy,
hyponymy, synonymy, entailment).

Table I
THEORIES AND LANGUAGES CHOSEN FOR THIS STUDY.

ID Type Domain Nodeg Rels. | Ref

AM Language ArchiMate 3.0 30 31 [35]

i* Language i* 2.0 15 77 [40]

CDD Language Capability Driven | 30 118 [5]
Development

BIZ Text BIZBOK 2.0 23 34 [41]

CEB Text Business Capabili- | 52 140 [38]
ties Handbook

LVK Text Core Capabilities 27 73 [3]

After that, we create a taxonomy, i.e. hierarchical classifi-
cation of the elements in the nuanced kernels of all specifica-
tions. This structure acts as an assumed ontological structure,
i.e. an actual structure that represents the hidden semantics of
all specifications.

Finally, we perform an Anchoring [22], which is an ambigu-
ous classification that maps elements in the reverse-engineered
taxonomy to nuanced concepts of the specification models.

C. Bias Calculation

As there can be a large number of semantic dependencies
for nuanced elements, first we perform a domain-specific clus-
tering, based on upper levels of the taxonomy constructed in
the previous stage. Finally, we calculate the bias as defined at
the end of section III-D. We employ a spider chart to visualize
the bias of each specification, where each axis represents the
weighed semantic distance for a particular cluster.

For instance, if there are eight anchored concepts to a cluster
G, and three belong to a specification A, the bias score for
this axis is calculated by summing of the weighed semantic
distances A between the nuanced concept of A and each of
the three concepts of the nuanced kernel of A that belong to
G. This value is then divided by the sum of all eight deltas,
including the ones from other specifications.

V. APPLICATION OF THE METHOD TO BUSINESS
CAPABILITIES

Business Capabilities have been recognized as an integral
part of Enterprise Architecture nomenclature, and especially
a core element of Business Architecture [24]. There is a
plethora of bibliography on what a capability is, how it fits
on the architecture of the enterprise, and how to model,
analyze, and communicate capabilities. Please refer to [7], and
[6] for a glimpse on the nuances of this concept, and why
this is a problem in Enterprise Modelling. We have selected
six specifications: three for DSMLs, and three for textual
specifications (see Table I).

In order to evaluate specifications with the same set of tools,
we created models for three Enterprise Modelling Languages
and three Capability Theories, based on their respective spec-
ifications. As the models are quite large for displaying them
in this paper, fig. 6 shows the concepts as graph nodes, and
the relationships between concepts as edges. For this study,
these models were created with the Ecore syntax of the Eclipse
Modelling Framework.

.OO ° ’ L4 R ° e®e
. LT3 :'. l o o * 0, .’: 'o.o
° o o ° [] ° e o 0. > o ®
e ° ¢ e o * ‘oo) %
L]
LVK ° . : '.o.:
A BIZ
¢ ..o.o (émn
o b o o
L] . oL o ®
. ¢ g0 0, ae
«® o e o : *. : ¢ .~
o £] (]

..o. w ® R c... o ¢ o 0. « :. P)
o> % % oo S o o °
-... Y 0.0. .« ® N .

«"CEB CcDD i
Figure 6. Models selected for this study (see Table I). In the case of

ArchiMate, we only present the Capability Kernel, as the entire model is
quite large.

Variation

=

v
Lead

To

Activity

Resource

Figure 7. Hierarchical Ontology based on [6] for classifying concepts in €2 .

Given that the CDD, and i* specifications provided the
Metamodels, the modelling was straightforward. For BIZ,
CEB, and LVK (see Table I), we created linguistic models
by modelling our interpretation of each theory.

For five of the models, the kernel was the same as the
models for a §,,,, = 8, as almost all the terms are syntactically
connected to the nuanced term Capability. However, the lin-
guistic model of ArchiMate contains 43 non-abstract concepts,
and 3337 relationships (by applying ArchiMate derivation
rules), resulting in a situation where every concept was related
(by some strength) to the Concept of Capability. To obtain
the Kernel of ArchiMate, we selected concepts that were
directly connected by Composition, Realization, Aggregation,
and Used By relationship types, and that did not belong to the
Technology, Application, and Core domains (see [35]).

A. Ontology Reverse-Engineering

We obtained a Base Taxonomy of the concept of Capability,
based on the definition of Tell [6]. This definition starts with

-
Required
Value:
Jassificatior -
TRt
-
B
. [Capabitty
B
Quality .
- e]
- Visibilty
L Process = *
= [E
Loyalty

Figure 8. Anchoring of the different concepts in the CEB metamodel to the
15 classifying criteria of Fig. 7.

Y L
W AN

R K
LS

Figure 9. Domain-specific thesaurus for ArchiMate. Colors of relationships
represent the type of semantic relationship.

an identification of what capability is not, and identifying
the essential elements of any definition of capability. This
is the first level of the taxonomy, which represents essential
categories for the concept (see Fig. 7). Then, we expanded the
ontology with sub-categories for each category described by
Tell. Finally, we anchored the concepts of each specification
with categories on the base taxonomy. Fig. 8 shows the
anchoring of the CEB specification: Each color represents an
anchoring of the concept to a sub-category of Fig. 7.

For the automatic anchoring, we created a Thesaurus of each
1, using the English corpus of WordNet [28]. In contrast with
[27], we calculated similarity using eight relationship types of
the taxonomy. This is because, as suggested by Deissenboeck
and Ratiu [39], we have to consider several semantic similarity
relationship types when performing semantic reverse engineer-
ing of a domain.

B. Bias Calculation

Given the 15 clusters of the base ontology (which represent
the nuances of the Capability concept), as well as the anchored

Table II

WEIGHED DISTRIBUTION OF NUANCES AMONG SPECIFICATIONS
ID | Nuance N | AM | BIZ | CDD| CEB | i* LVK
A | Activity 7 28.5% 0% 14.2% 38.19% 0% 14.39%
B | Actor 15| 13.3% 23.8% 0% 6.7% | 22.7% 0%
C | Assessment 38 | 19.4% 18.3% 0% 56.79% 7.9% | 12.39%
D | Classification| 12 | 0% 0% 0% 43.19%9 0% 76.49%
E | Competence | 3 | 0% 0% 0% 0% 0% 100%
F | Context 11| 21.8%9 0% 473% 9.1% | 9.1% | 9.1%
G | Event 2 | 50% | 0% 50% | 0% 0% 0%
H | Granularity 3 0% 0% 0% 100%| 0% 0%
1 Information | 5 66.7% 0% 0% 20% | 0% 20%
J Measurement | 10 | 0% 0% 64.8% 10% | 0% 0%
K | Product 9 26.7% 52.6% 0% 0% 0% 0%
L | Resource 5 44% | 0% 20% | 20% | 20% | 0%
M | Target 17| 1279 24.49% 59% | 35.3% 5.9% | 11.89%
N | Value 20 | 5% 10.8% 0% 61.1% 0% 23.59%
O | Variation 10| 0% 0% 100%| 0% 0% 0%

concepts for each cluster, we proceeded to calculate the bias
of each specification towards each nuance. For obtaining the
coordinates of the 15-dimensional vector 3 (see Eq. 10), we
generated a special semantic structure (see Fig. 9) that, in
contrast to general thesaurus, it only contains the shortest paths
between the dependencies of the nuanced concepts (see Fig.
10 for an example with two concepts).

To create this structure, we analyzed the WordNet thesaurus
[28], and extracted Synsets that were in shortest paths of
maximum length d,,,, = 8. Then, we assigned weights to
8 different semantic similarity relationships: hyponym, hyper-
nym, category, member meronym, similar, member of category
domain, instances hyponym, and substance meronym. This
allows a straightforward calculation of A, which is the length
of the path between the nuanced concept C' (i.e. Capability)
and each ¢; member of the kernel #,C. The score for a nuance
in a specification A is calculated with Eq. 12, where k is the
size of the kernel, and m = maz(A(C,¢;)) for all ¢; € H

1

* A(C,¢;) * (m) (12)

T =

k
score(H) = Z
i=1

Results of the evaluation can be seen in Table II, where
N is the total number of concepts for each nuance. These
results are visualized in Fig. 11 as spider charts, where it is
possible to infer the distribution of each nuance (the radial
axis) for the six specifications. Furthermore, the bias of each
specification can be easily inferred: For instance, if we were
interested in a theory that describes the Contextual, Variation,
and Event aspects of a Capability, i.e. we are biased towards
a particular interpretation of Capability, we would certainly
choose the CDD theory and metamodel, instead of e.g. the
BIZBOK or i* theories, which do not have concepts for such
aspects. On the other hand, if we were interested on more
general theories of Capability, we would choose ArchiMate,
which contains several common aspects of the concept. We
could even use both ArchiMate and CEB, as their combination
covers most nuances (all except Classification, Measurement,
and Variation).

hypernym hypony

sensation

ernym

basic

perception

.A""threshold

cognitive pypenyn hypernym

process

synpet:
cognition l-

process

Figure 10. Example of a thesaurus path of A = 6 between the concepts Threshold Capability and Knowledge, found in the LVK specification.

AM BIZ
o A B o A 8
N C N C
M p M D
'- e L E
K F K F
J G J G
I H I H
CDD CEB
o A 8 o A B
N c N C
M p M D
L £ L £
K F K F
J G J G
I H I H
i* LVK
o A 8 o A B
N c N C
M p M D
L ‘4 e L V‘E
K F K F
J G J G
I H I H

Figure 11. Evaluation of the Bias of each Specification towards 15 nuances
found in the corpus. Please refer to Table II for the label of each axis.

C. Related Work

The notions of interpretation and meanings has been ex-
plored in Intensional Logics (e.g. Propositional Modal Logic),
a formal approach to infensions, which represent meanings,
as opposed to extensions, which represent designators. These
logics are based on Carnap’s idea that intensions can be given
a precise mathematical embodiment as functions on states.
However, Intensional Logics do not allow the precise definition
of Nuances, which we consider an important construct in the
comparison of theories. Instead, we employ Model Theory,
which makes the distinction between Languages, Theories, and
Structures, allowing a formal definition of nuance.

Karagiannis et al. [19] approach the hidden semantics
of metamodels by anchoring domain-specific ontologies that
enrich the semantics of modeling tools. Guizzardi et al.

[16], [32], [43] provide a large body of work for the sup-
port of modeling language design, and introduce the Unified
Foundational Ontology (UFO) that provides an isomorphism
between ontologies and modeling languages, thus supporting
the construction of languages that are ontologically sound.
These approaches, in conjunction with the work of Atkinson
and Kiihne [18], are used to provide a conceptual foundation
for a theory of nuance.

Deissenboeck and Ratiu [39] approach the semantic reverse-
engineering of source code artifacts, in order to uncover the
semantics of compiled programs. We adopt this notion of
semantic reverse-engineering, and apply it to a set of models.

Recently, Pittke et al. [42] proposed an approach for the de-
tection and resolution of lexical ambiguity in Process Models.
Their approach uses the BabelNet® corpus for Word Sense
Disambiguation by identifying homonyms and synonyms in
the designators of process activities. While their scope is more
specific, we consider that their approach can be used in our
framework as the A function that returns the semantic distance
between concepts.

In [44] and [27], Babur et al. explore the joint analysis
of a corpus of models by constructing an unified model.
In this study, hierarchical IS-A relationships (hyponymy and
hypernymy) are used to merge similarities between concepts,
i.e. by finding clusters that contain similar labels. While this
approach is valuable for performing specification comparison,
it only describes similarities in terms of domain-agnostic
clusters, as this process is automated. Therefore, we employ
a mixed approach, where the classifying ontology is created
systematically, e.g. by the negative approach of Tell [6].
The advantage of using a mixed approach is that we can
obtain domain-specific clusters that provide a more descriptive
ontology of the domain, allowing the identification of nuances.

VI. CONCLUSION AND OUTLOOK

In this paper, we examined the relationship between syntax
and semantics, and took advantage of ambivalent classifica-
tion to uncover the hidden semantics of specifications. Then,
we proposed an approach for calculating the bias of these
specifications towards particular nuances. The application of
this approach can help in the comparison between theories,
languages, and metamodels, in order to select the best one for
modeling a domain of a particular enterprise. In addition, it
can be used to merge different specifications, with the aim of
having a more complete metamodel of a domain.

3 A lexical database based in WordNet, enriched with encyclopedic knowl-
edge from Wikipedia [42].

The accuracy of the evaluation depends on five qualities:
1) The accuracy of the models created from specifications, 2)
How many specifications are evaluated, 3) The relationship
types selected for linguistic matching, 4) The ontological
strength of the taxonomy, and 5) The selected algorithm for
semantic distance calculation. Thus, future work is directed on
improving these five qualities. For instance, Machine Learning
approaches can be employed to support the semi-automatic
creation of the Base Ontology, and different approaches, e.g.
[42] can be used to calculate the semantic distance.

ACKNOWLEDGMENT

This work was supported by the COLCIENCIAS grant 727
for doctoral studies.

[1]
[2]

[6]

[8]
[9]

[10]

(1]
[12]
[13]

[14]
[15]

[16]

[17]

(18]

[19]

REFERENCES

B. Selic, “The pragmatics of model-driven development,” IEEE Soft-
ware, vol. 20, no. 5, pp. 19-25, Sep. 2003.

H. L. Ansoft, Corporate strategy: An analytic approach to business policy
for growth and expansion. McGraw-Hill Companies, 1965.

C. Long and M. Vickers-Koch, “Using core capabilities to create
competitive advantage,” Organizational dynamics, vol. 24, no. 1, pp.
7-22, 1995.

D. Beimborn, S. F. Martin, and U. Homann, “Capability-oriented mod-
eling of the firm,” in IPSI Conference, 2005.

S. BérziSa, G. Bravos, T. C. Gonzalez, U. Czubayko, S. Espaiia,
J. Grabis, M. Henkel, L. Jokste, J. Kampars, H. Kog, J.-C. Kuhr,
C. Llorca, P. Loucopoulos, R. J. Pascual, O. Pastor, K. Sandkuhl,
H. Simic, J. Stirna, F. G. Valverde, and J. Zdravkovic, “Capability Driven
Development: An Approach to Designing Digital Enterprises,” Business
& Information Systems Engineering, vol. 57, no. 1, pp. 15-25, Feb.
2015.

A. W. Tell, “What capability is not,” in International Conference
on Business Informatics Research. Springer, 2014, pp. 128-
142. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-319-11370-8_10

G. Dosi, R. Nelson, and S. Winter, The nature and dynamics of
organizational capabilities. OUP Oxford, 2001.

J. Ludewig, “Models in software engineering - an introduction,” Software
and Systems Modeling, vol. 2, no. 1, pp. 5-14, Mar. 2003.

P-A. Muller, F. Fondement, B. Baudry, and B. Combemale, “Modeling
modeling modeling,” Software & Systems Modeling, vol. 11, no. 3, pp.
347-359, Jul. 2012.

E. Rodriguez-Priego, F. J. Garcia-Izquierdo, and A. L. Rubio,
“References-enriched Concept Map: a tool for collecting and compar-
ing disparate definitions appearing in multiple references,” Journal of
Information Science, vol. 39, no. 6, pp. 789-804, Dec. 2013.
C. W. Morris, Writings on the general theory of signs.
Gruyter, 1971, vol. 16.

E. Seidewitz, “What models mean,” IEEE software, vol. 20, no. 5, pp.
26-32, 2003.

T. Kiihne, “Matters of (meta-) modeling,” Software & Systems Modeling,
vol. 5, no. 4, pp. 369-385, 2006.

H. Stachowiak, Allgemeine Modelltheorie. Springer-Verlag, 1973.

D. Harel and B. Rumpe, “Meaningful modeling: what’s the semantics
of”” semantics”?” Computer, vol. 37, no. 10, pp. 64-72, 2004.

G. Guizzardi, Ontological foundations for structural conceptual models.
Enschede : Enschede: University of Twente. Centre for telematics and
information technology ; Telematics instituut, 2005, oCLC: 799205844.
T. Kiihne, “Clarifying matters of (meta-) modeling: an author’s reply,”
Software & Systems Modeling, vol. 5, no. 4, pp. 395-401, Dec. 2006.
C. Atkinson and T. Kiihne, “Demystifying Ontological Classification
in Language Engineering,” in Modelling Foundations and Applications:
12th European Conference, ECMFA 2016, Held as Part of STAF
2016, Vienna, Austria, July 6-7, 2016, Proceedings. Cham: Springer
International Publishing, 2016, pp. 83-100.

D. Karagiannis and P. Hofferer, “Metamodels in action: An overview,”
in ICSOFT 20006, First International Conference on Software and
Data Technologies, Setiibal, Portugal, September 11-14, 2006, J. Filipe,
B. Shishkov, and M. Helfert, Eds. INSTICC Press, 2006.

Walter de

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]
[34]
[35]
[36]

[37]

(38]
[39]

[40]

[41]

[42]

[43]

[44]

A. Third, “Hidden semantics: what can we learn from the names in
an ontology?” in Proceedings of the Seventh International Natural
Language Generation Conference. Association for Computational
Linguistics, 2012, pp. 67-75.

M.-N. Terrasse, M. Savonnet, E. Leclercq, T. Grison, and G. Becker, “Do
We Need Metamodels AND Ontologies for Engineering Platforms?” in
Proceedings of the 2006 International Workshop on Global Integrated
Model Management, ser. GaMMa "06. New York, NY, USA: ACM,
2006, pp. 21-28.

P. Hofferer, “Achieving Business Process Model Interoperability Using
Metamodels and Ontologies.” in ECIS, 2007, pp. 1620-1631.

A. M. Sutti, T. Verhoeff, and M. G. J. van den Brand, “Ontologies in
domain specific languages: a systematic literature review,” Technische
Universiteit Eindhoven, Eindhoven, Tech. Rep., 2014.

T. O. Group, “Business Capabilities,” Tech. Rep., 2016.

N. Grabar, T. Hamon, and O. Bodenreider, “Ontologies and terminolo-
gies: Continuum or dichotomy?” Applied ontology, vol. 7, no. 4, pp.
375-386, 2012.

D. Kless, S. Milton, and E. Kazmierczak, “Relationships and relata in
ontologies and thesauri: Differences and similarities,” Applied Ontology,
vol. 7, no. 4, pp. 401-428, Jan. 2012.

0. Babur, L. Cleophas, and M. v. d. Brand, “Hierarchical Clustering of
Metamodels for Comparative Analysis and Visualization,” in Modelling
Foundations and Applications, ser. Lecture Notes in Computer Science.
Springer International Publishing, Jul. 2016, pp. 3-18.

G. A. Miller, “WordNet: a lexical database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 3941, 1995.

E. Deza and M. M. Deza, Encyclopedia of Distances. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, dOI: 10.1007/978-3-642-
00234-2.

G. Varelas, E. Voutsakis, P. Raftopoulou, E. G. Petrakis, and E. E. Milios,
“Semantic Similarity Methods in wordNet and Their Application to In-
formation Retrieval on the Web,” in Proceedings of the 7th Annual ACM
International Workshop on Web Information and Data Management, ser.
WIDM °05. New York, NY, USA: ACM, 2005, pp. 10-16.

B. Henderson-Sellers, On the Mathematics of Modelling, Metamodelling,
Ontologies and Modelling Languages, ser. SpringerBriefs in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, dOI:
10.1007/978-3-642-29825-7.

G. Guizzardi, “On Ontology, Ontologies, Conceptualizations, Modeling
Languages, and (Meta)Models,” in Proceedings of the 2007 Conference
on Databases and Information Systems IV: Selected Papers from the
Seventh International Baltic Conference DB&IS’2006. Amsterdam,
The Netherlands, The Netherlands: I0S Press, 2007, pp. 18-39.

W. Hodges, A Shorter Model Theory. New York, NY, USA: Cambridge
University Press, 1997.

C. Chang and H. Keisler, Model Theory, 3rd ed., ser. Studies in Logic
and the Foundations of Mathematics. Elsevier, Academic Press, 1990.
The Open Group, “ArchiMate ® 3.0 Specification,” Tech. Rep., 2016.
A. Laarman and I. Kurtev, “Ontological Metamodeling with Explicit
Instantiation,” in Software Language Engineering. Springer, Berlin,
Heidelberg, Oct. 2009, pp. 174-183.

D. Leonard-Barton, “Core capabilities and core rigidities: A paradox
in managing new product development,” Strategic management journal,
vol. 13, no. S1, pp. 111-125, 1992.

CEB, “The Architect’s Business Capabilities Handbook,” 2013.

F. Deissenboeck and D. Ratiu, “A unified meta-model for concept-based
reverse engineering,” in Proceedings of the 3rd International Workshop
on Metamodels, Schemas, Grammars and Ontologies (ATEM’06), 2006.
F. Dalpiaz, X. Franch, and J. Horkoff, “istar 2.0 language guide,” arXiv
preprint arXiv:1605.07767, 2016.

B. A. Guild, “A Guide to the Business Architecture Body of Knowledge
(BIZBOK Guide), V. 4.5” Tech. Rep., 2015. [Online]. Available:
http://www.businessarchitectureguild.org/

F. Pittke, H. Leopold, and J. Mendling, “Automatic Detection and
Resolution of Lexical Ambiguity in Process Models,” IEEE Transactions
on Software Engineering, vol. 41, no. 6, pp. 526544, Jun. 2015.

G. Guizzardi and G. Wagner, “A Unified Foundational Ontology and
some Applications of it in Business Modeling.” in CAiSE Workshops
(3), 2004, pp. 129-143.

0. Babur, L. Cleophas, T. Verhoeff, and M. van den Brand, “Towards
Statistical Comparison and Analysis of Models:” SCITEPRESS -
Science and and Technology Publications, 2016, pp. 361-367.

